我们提出了一个基于深度学习的自动咳嗽分类器,可以区分结核病(TB)与Covid-19咳嗽和健康咳嗽。 TB和Covid-19都是呼吸道疾病,具有传染性,咳嗽是一种主要的症状,每年夺走了数千人的生命。在室内和室外设置都收集了咳嗽的录音,并使用来自全球各地受试者的智能手机上传,因此包含各种噪声。该咳嗽数据包括1.68小时的结核病咳嗽,18.54分钟的咳嗽,咳嗽和1.69小时的健康咳嗽,47例TB患者,229例Covid-19患者和1498例健康患者,并用于培训和评估CNN,LSTM和Resnet505050 。这三个深度体系结构在2.14小时的打喷嚏,2.91小时的语音和2.79小时的噪音中也进行了预训练,以提高性能。通过使用SMOTE数据平衡技术并使用诸如F1得分和AUC之类的性能指标来解决我们数据集中的类不平衡。我们的研究表明,从预先训练的RESNET50中获得了最高的0.9259和0.8631的F1分数,两级(TB与CoVID-19)和三级(TB VS VS COVID-19与健康)的咳嗽分类,咳嗽分类,,咳嗽分类任务,三级(TB vs vs covid-19)分别。深度转移学习的应用改善了分类器的性能,并使它们更加坚固,因为它们在交叉验证折叠上更好地概括了。他们的表现超过了世界卫生组织(WHO)设定的结核病分类测试要求。产生最佳性能的功能包含MFCC的高阶,这表明人耳朵无法感知结核病和COVID-19之间的差异。这种类型的咳嗽音频分类是非接触,具有成本效益的,并且可以轻松地部署在智能手机上,因此它可以成为TB和COVID-19筛查的绝佳工具。
translated by 谷歌翻译
我们提出“唤醒咳嗽”,这是使用resnet50咳嗽到咳嗽的应用,并使用i-vectors识别咳嗽者,以实现长期的个性化咳嗽监测系统。咳嗽记录在一个安静(73 $ \ pm $ 5 dB)和嘈杂(34 $ \ pm $ 17 dB)环境中,用于提取I-向量,X-向量和D-向量,用作分类器的功能。当使用MLP使用2-SEC长咳嗽片段在嘈杂的环境中使用MLP区分51个咳嗽者时,该系统可以达到90.02 \%的精度。当在安静环境中使用更长(100秒)段的5和14个咳嗽者区分5至14个咳嗽者时,这种准确性分别提高到99.78%和98.39%。与语音不同,I-向量在识别咳嗽者方面的表现优于X-向量和D-向量。这些咳嗽是在Google语音命令数据集中添加的额外类,并通过在触发短语中保存端到端的时间域信息来提取功能。使用RESNET50在35个其他触发短语中发现咳嗽时,达到了88.58%的最高精度。因此,Wake咳嗽代表了一个个性化的,非侵入性的咳嗽监测系统,该系统的功率有效,因为在设备上的唤醒词检测可以使基于智能手机的监视设备大多处于休眠状态。这使伴尾咳嗽在多床病房环境中极具吸引力,以监测患者从肺部疾病(例如结核病(TB)和Covid-19)中的长期恢复。
translated by 谷歌翻译
Sampling-based Model Predictive Control (MPC) is a flexible control framework that can reason about non-smooth dynamics and cost functions. Recently, significant work has focused on the use of machine learning to improve the performance of MPC, often through learning or fine-tuning the dynamics or cost function. In contrast, we focus on learning to optimize more effectively. In other words, to improve the update rule within MPC. We show that this can be particularly useful in sampling-based MPC, where we often wish to minimize the number of samples for computational reasons. Unfortunately, the cost of computational efficiency is a reduction in performance; fewer samples results in noisier updates. We show that we can contend with this noise by learning how to update the control distribution more effectively and make better use of the few samples that we have. Our learned controllers are trained via imitation learning to mimic an expert which has access to substantially more samples. We test the efficacy of our approach on multiple simulated robotics tasks in sample-constrained regimes and demonstrate that our approach can outperform a MPC controller with the same number of samples.
translated by 谷歌翻译
Sampling-based methods have become a cornerstone of contemporary approaches to Model Predictive Control (MPC), as they make no restrictions on the differentiability of the dynamics or cost function and are straightforward to parallelize. However, their efficacy is highly dependent on the quality of the sampling distribution itself, which is often assumed to be simple, like a Gaussian. This restriction can result in samples which are far from optimal, leading to poor performance. Recent work has explored improving the performance of MPC by sampling in a learned latent space of controls. However, these methods ultimately perform all MPC parameter updates and warm-starting between time steps in the control space. This requires us to rely on a number of heuristics for generating samples and updating the distribution and may lead to sub-optimal performance. Instead, we propose to carry out all operations in the latent space, allowing us to take full advantage of the learned distribution. Specifically, we frame the learning problem as bi-level optimization and show how to train the controller with backpropagation-through-time. By using a normalizing flow parameterization of the distribution, we can leverage its tractable density to avoid requiring differentiability of the dynamics and cost function. Finally, we evaluate the proposed approach on simulated robotics tasks and demonstrate its ability to surpass the performance of prior methods and scale better with a reduced number of samples.
translated by 谷歌翻译
Interpretable entity representations (IERs) are sparse embeddings that are "human-readable" in that dimensions correspond to fine-grained entity types and values are predicted probabilities that a given entity is of the corresponding type. These methods perform well in zero-shot and low supervision settings. Compared to standard dense neural embeddings, such interpretable representations may permit analysis and debugging. However, while fine-tuning sparse, interpretable representations improves accuracy on downstream tasks, it destroys the semantics of the dimensions which were enforced in pre-training. Can we maintain the interpretable semantics afforded by IERs while improving predictive performance on downstream tasks? Toward this end, we propose Intermediate enTity-based Sparse Interpretable Representation Learning (ItsIRL). ItsIRL realizes improved performance over prior IERs on biomedical tasks, while maintaining "interpretability" generally and their ability to support model debugging specifically. The latter is enabled in part by the ability to perform "counterfactual" fine-grained entity type manipulation, which we explore in this work. Finally, we propose a method to construct entity type based class prototypes for revealing global semantic properties of classes learned by our model.
translated by 谷歌翻译
时间序列形状是最近发现对时间序列聚类有效(TSC)有效的歧视子序列。形状方便地解释簇。因此,TSC的主要挑战是发现高质量的可变长度形状以区分不同的簇。在本文中,我们提出了一种新型的自动编码器窗帘方法(AutoShape),这是第一次利用自动编码器和塑形器以不受欢迎的方式确定形状的研究。自动编码器的专门设计用于学习高质量的形状。更具体地说,为了指导潜在的表示学习,我们采用了最新的自我监督损失来学习不同变量的可变长度塑形塑形(时间序列子序列)的统一嵌入,并提出多样性损失,以选择歧视嵌入的嵌入方式统一空间。我们介绍了重建损失,以在原始时间序列空间中恢复形状,以进行聚类。最后,我们采用Davies Bouldin指数(DBI),将学习过程中的聚类性能告知AutoShape。我们介绍了有关自动赛的广泛实验。为了评估单变量时间序列(UTS)的聚类性能,我们将AutoShape与使用UCR存档数据集的15种代表性方法进行比较。为了研究多元时间序列(MTS)的性能,我们使用5种竞争方法评估了30个UEA档案数据集的AutoShape。结果证明了AutoShape是所有比较的方法中最好的。我们用形状来解释簇,并可以在三个UTS案例研究和一个MTS案例研究中获得有关簇的有趣直觉。
translated by 谷歌翻译
倾斜的随机生存森林(RSF)是一种用于右翼结果的合奏监督学习方法。斜RSF中的树是使用预测变量的线性组合生长的,以创建分支,而在标准RSF中,使用单个预测变量。倾斜的RSF集合通常比标准RSF合奏具有更高的预测准确性。但是,评估预测变量的所有可能的线性组合会诱导大量的计算开销,从而将应用限制为大规模数据集。此外,几乎没有开发用于解释斜RSF合奏的方法,与基于轴的对应物相比,它们仍然难以解释。我们介绍了一种提高斜力RSF计算效率的方法,以及一种用斜RSF估计单个预测变量重要性的方法。我们减少计算开销的策略是利用牛顿 - 拉夫森评分(Newton-Raphson)评分,这是一种经典的优化技术,我们适用于决策树的每个非叶子节点内的COX部分似然函数。我们通过在线性组合中否定了用于给定预测指标的每个系数,然后计算出降低的降低准确性,从而估计单个预测因子对斜RSF的重要性。通常,在基准测试实验中,我们发现,与现有的斜RSF相比,与现有软件相比,我们对斜RSF的实现速度约为450倍,而较高的Brier得分则要高450倍。我们在模拟研究中发现,“否定重要性”比置换重要性,莎普利添加性解释和先前引入的技术更可靠地区分相关和无关的预测因子,以基于方差分析来衡量斜RSF的可变重要性。当前研究中引入的方法可在AORSF R软件包中获得。
translated by 谷歌翻译
环境的语义(例如地形类型和属性)揭示了腿部机器人调整其行为的重要信息。在这项工作中,我们提出了一个框架,该框架从对四足动物的知觉中学习语义感知的运动技能,以便使用感知信息的机器人可以以适当的速度和步态穿越复杂的越野地形。由于缺乏高保真性户外模拟,我们的框架需要直接在现实世界中进行培训,这带来了数据效率和安全性的独特挑战。为了确保样本效率,我们使用越野驾驶数据集预先培训感知模型。为了避免现实世界政策探索的风险,我们利用人类演示来训练速度政策,从相机图像中选择所需的前进速度。为了获得最大的遍历性,我们将速度策略与步态选择器配对,该步态选择器为每个前进速度选择了强大的运动步态。仅使用40分钟的人类演示数据,我们的框架就可以根据感知的地形语义来调整机器人的速度和步态,并使机器人能够以近距离的速度行驶超过6公里。
translated by 谷歌翻译
在本文中,我们关注将基于能量的模型(EBM)作为运动优化的指导先验的问题。 EBM是一组神经网络,可以用合适的能量函数参数为参数的GIBBS分布来表示表达概率密度分布。由于其隐含性,它们可以轻松地作为优化因素或运动优化问题中的初始采样分布整合在一起,从而使它们成为良好的候选者,以将数据驱动的先验集成在运动优化问题中。在这项工作中,我们提出了一组所需的建模和算法选择,以使EBMS适应运动优化。我们调查了将其他正规化器在学习EBM中的好处,以将它们与基于梯度的优化器一起使用,并提供一组EBM架构,以学习用于操纵任务的可通用分布。我们提出了多种情况,可以将EBM集成以进行运动优化,并评估学到的EBM的性能,以指导模拟和真实机器人实验的指导先验。
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译